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INTRODUCTION

This report describes an enhanced method for thei@o of the potential difference integral in
the Time Harmonic Field Electric Logging problemndér certain circumstances, the original
metho-dology for solving the potential differencgeigral fails to give an accurate representation
of the AR’s located relatively far from the current elemefithough these inaccuracies do not
alter significantly the final tool measurementsg tplution of this problem would make the
algorithm more robust and reliable. The enhancedhode presented here, instead of a
replacement for the original one, actually constgua modification that improves the overall

performance of the algorithm.

THE ORIGINAL METHOD AND ITSLIMITATIONS

First of all, let us present a brief review of thrgginal technique. A more detailed description of
it is provided in [1]. The original technique isded in the use of two complementary exponential
windows for decomposing the potential differencéegnal into two independently solvable

integrals, denoted dg(z) andl,(z).

Each of these two new integrals are approximatea digcrete convolution as follows:

1,(2) = 9,(2) L1,(2) 1)
wheref,(z) is a known finite impulse response filter ag@z) is an interpolated sequence of the

cosine transform samples computed by the fastratieg algorithm [2].



1,(2) = 9,(2) Lf,(2) +&(2) 2)
wheref,(z) is another known finite impulse response filgy(z) is an interpolated sequence of
the sine transform samples computed by the fasgiation algorithm [2] and(z) is a bias term

that is computed analytically.

The main limitation of the original methodology fewlving the potential difference integral is its
failure in giving an accurate representation ofsthR’s located far from the current element
when the experimental scenario leads to stronguateon of the electromagnetic fields. That
usually happens when the mud conductivity is mumhblker than the surrounding zones or when

the tool is operating at relatively high frequescie

Figures 1 and 2 show the absolute value ofARé&s for both of the scenarios described above,
high conductivity contrast (mud conductivity << e@riconductivity) and high frequency of

operation respectively.




Figure 1:AR’s in a high conductivity contrast scenario.

The high conductivity contrast scenario considdmedigure 1 was a two-zone formation with

mud conductivity of 0.1 S/m, true conductivity d $/m and borehole radius of 0.1 m, with a
tool's operation frequency of 0 Hz. On the othandhahe high frequency scenario considered for
figure 2 was an homogeneous formation of condugtiviS/m, and an operation frequency of 1.0

Mrad/s. The same symmetric LIs tool was used fon lob the simulations.
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Figure 2:AR’s in a high operation frequency scenario.

As it can be seen from figures 1 and 2, only tla part of theAR’s is affected by the problem.

After a careful and detailed analysis of the intedmte computations along the solution
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procedure over a wide variety of experimental sgesathe problem was detected to be

generated by the way,(2) is computed. Figure 3 illustrates how it happens.

Figure 3: Bias term and convolution term in higimadactivity contrast scenarios with:

(a) mud conductivity >> true one, and (b) true agsttvity >> mud one.



Notice from figure 3 that the problem is relatedthie existence of the bias terg(z). In fact,

because the convolution in (2) numerically apprates the value of an integral, a small
numerical error (noise) is always embedded in #sailt. When strong attenuation must occur,
the method relays on cancellation, between the teigs and the convolution term, in order to
produce small results. Then, the numerical err@ob®s more significant in proportion to the

final result.

For the case of high operation frequency scen#nesituation happens to be very similar to the

one illustrated in figure 3.b.

Because of the reasons exposed above, it is haw ttlat any alternative procedure attempting
to overcome these limitations must computgz) in the same way the integral(z) is

computed, by approximating the integral value withibhe necessity of any bias term.

A BRIEF ANALYSISON THE COMPUTATION OF 14(2)

The potential difference integral, which is pregsenin [3], is given by:

L2 B KB+l Rar) SPAN2)
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3)

where, = B,(A)=§ N+jou O, (4)
r, is the radius of the logging tool, h is the segmmength, w is the angular frequency of
operation,p is the magnetic permeability, is the electric conductivity of zone I, is the

reflection coefficient of zone 1 (which is computagthe recursive procedure described in [3] ),

andl, andK , are the zero order Modified Bessel functions it fand second kind.

And the integral ,(2) is initially defined as (see [1]):
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wherew, (A) is the following exponential window:

—_1 _ _)\2
w,(\)=1 Exp(wuol] (6)

Notice that according to the product property @ fburier transform, (5) can be computed in the
z domain by convolving the inverse fourier transferof the factors in brackets which are
denotedG,(A) andF,(A) respectively. Let us denote their inverse fouti@ansforms agy,(2)

and f,(z). While f,(z) can be computed analytically,(z) must be computed by using
numerical integration. However, as it is descriledl], there is a problem involved in the
computation ofg,(z). That is the fact tha®,(A), instead of going to zero, tends to a constant

value when approaches infinity, making the numerical compatetf | ,(z) very inaccurate.

Because of the reason exposed ab@g€)) had to be redefined by adding a step function such
that the newG,(A) would tend to zero as approaches infinity. Although that modification
allowed a more accurate computationggfz) , it also causes the necessity of a bias term whose
roll is to compensate the effect of adding the $teytion. In fact, the bias term is computed as

the convolution betweefy (z) and minus the step function [1].

ALTERNATIVE PROCEDURE FOR COMPUTING I4(2)

After considering the facts discussed in the previsection, it seems that in order to achieve a
successful alternative procedure, (5) has to beifreddn some way (different than the addition
of a step function of course) such that the fagtside the first brackets goes to zero when

approaches infinity. The most obvious and natuf of doing that is by rewriting it as follows:
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Again, let us denote aéz()\) and IEZ()\) the new factors inside brackets, andja) and?z(z)
their inverse fourier transforms respectively. Thiey using the product property of the fourier

transform, the integral in (7) can be written ie thdomain as the following convolution:
1,(2) = ,(2) O (2) ®)

where the functioriz(z) can be computed analytically and is given by:

f,(z) = -1/16 for z =-3h/2
-1/8 for  -3h/2<z<-h/2
+1/16 for z=-h/2
+1/4 for  -h/2<z<+h/2
+1/16 for z =+h/2
-1/8 for  +h/2 <z <+3h/2
-1/16 for z = +3h/2
0 otherwise 9)

On the other handj,(z) has to be computed numerically. Notice from (ﬁaa,tﬂ)ecauséz()\)
exhibits even symmetry with respectite 0, the computation dj,(z) can be performed by an

inverse cosine transform as follows:
~ 157~
§.(2)=— | M) Cost2) o (10)
0
where the addition of a step function is not reggiianymore.
In this way,|,(z) can be directly computed as described in (8) withbe necessity of any kind

of bias function. However, this new procedure, \whiwercomes the computational limitations

of the original methodology, presents some impartamtations and cannot directly substitute



the first procedure. A detailed discussion abooséhlimitations is presented in the following

section.

LIMITATIONS OF THE NEW PROCEDURE

Now, let us analyze in more detail the implicatimighe modification introduced in (7). There

are basically two important limitation associatathvthe methodology developed in the previous
section. Although one of these limitations can béved and does not represent an actual
problem; the other one will finally determine thlé ultimate algorithm must be a combination

of the original and the new one.

The first and resolvable limitation is related e fact that the functiofb(z) in (8) is actually a
differentiator of second order. It can be easilsifieel from (7) that its fourier transform tends to
A2 whena approaches 0. Nevertheless, the real cause pfdbdéem is the use of a natural cubic

spline for interpolating the output of the fasteigttation technique used to compute (10).

As it can be seen in [2], the fast integration teghe provides output values with logarithmicaly

spaced abscissas. Interpolation is then perforroedstimate the uniformly spaced samples
required for the numerical evaluation of (8). Asatural cubic spline is used for interpolating,

the subsequent application of a differentiatorexfosmid order leads to an approximation gf)

with discontinuous first order derivative, and ceqgently, to an inaccurate representation of the
AR’s. Figure 4 illustrates this problem for the saamperimental setting used for figure 2. Notice

however that a substantial improvement over thgimal procedure have been achieved

(compare figure 4 to figure 2).

The solution of this first limitation, which mainBffects the high operation frequency scenarios
(where the values of th&R’s exhibit oscillatory responses), can be easihieved by replacing

the natural cubic spline interpolating functiondwgpline of a higher degree. The disadvantages



of using higher degree splines as interpolatorsrerencrement of the computational complexity
of the interpolation subroutines and the tendengyrdduce strong oscillations. However, in this
particular case, there is more to win than to lobgéanterpolating with a spline of a degree
higher than three. In this way, a natural quaning algorithm was specifically designed to be
included in the new procedure for computihgz). A detailed description of the algorithm is
presented in [4]. Figure 5 shows how the resuksaaain improved when the natural quartic

spline is used (compare figure 5 to figure 4).

The second and worse limitation appears in the coation ofg,(z) for values of z approaching
zero. In fact, when z = 0, the integral transform(10) diverges. This is because the function
being transformed decays as &5\ approaches infinity; so convergence of (10) ialtptdue to
the oscillations of the transformation kernel (tosine function); the higher is the value of z the

faster is the convergence of the integral.

As it can be seen now, this problem not only makgsossible the numerical computation of
0,(2) at z = 0; it also produces relatively largeoesrwhen numerically evaluating the integral at
small values of z. Nevertheless, for large valuez gwhere the integral values are mainly
determined by the behavior of the functions aronrd0), (10) can be computed with a great

degree of accuracy.
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Figure 4: Performance of the new method in a hjggration frequency scenario.
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Figure 5: New method with natural quartic splin&ihigh operation frequency scenario.
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THE FINAL ENHANCED METHOD

As it could been seen from the previous sectioioabh the new methodology does actually
solve the problems exhibited by the original praced it presents its own disadvantages and
limitations. For this reason the ultimate enhaneedhod has to be necessarily a combination of

the original algorithm and the new technique depetbabove.

While the problems presented by the new methodcanéined to those values of z relatively
close to the origin; fortunately, as it can be fiedi from figures 1 and 2, the original
methodology happens to fail at intermediate andtikadly large values of z. Then, we can still
count on the original algorithm for computing thR’s near the current element, and use the new

algorithm for thos@R'’s far from the current element.

The most important task in here is the selectiothefvalue of z at which the switching between
algorithms must occur. After some experimentatibe, following empirical criterion happened

to provide very good results:

zimit ={ zOR: [g,(2) Of,(2) +&(z)] = 0.01&(z) } (11)
whereg,(2), f,(z) and§(z) are the functions used for computingz) in the original algorithm.
See (2) and [1].

In summary, the final enhanced methodology candsertbed as follows:

1.- Computation of (z) as defined in (1).

2.- Computation of ,(2):
.- for z < zmit, computel ,(2) as defined in (2).

.- for z> zimit, computel ,(z) as defined in (8) and use quartic spline.
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3.- Computation oAR(z), which is given byt/(rtr, h) [1,(2) +1,(2)].

CONCLUSIONS

Although the new method developed cannot be useeblacement of the original algorithm, the
adequate combination of both of them provides aemmobust and reliable methodology for the
computation of the potential difference integrabwéver, the complexity and the computational

time requirements of this new combined algorithengreater than those of the original one.

There are still some other restrictions in the méthogy, but the main inconvenience related to
the original procedure for the solution of the Tikd@monic Field Electric Logging problem has
been certainly removed by the modifications intietl in the present work. In fact the
implementation of the new algorithm guaranties ezugate solution for almost any conceivable
experimental scenario. In this way, the limitatiaighe technique are now more closely related
to the physical and mathematical assumptions behmdnodel than to the numerical procedures

involved in the evaluation of the potential diffece integral.
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